Ştiri:

Vă rugăm să citiţi Regulamentul de utilizare a forumului Scientia în secţiunea intitulată "Regulamentul de utilizare a forumului. CITEŞTE-L!".

Main Menu

Matrice inversabila

Creat de foton01, Decembrie 21, 2012, 05:27:10 PM

« precedentul - următorul »

0 Membri şi 1 Vizitator vizualizează acest subiect.

foton01

Salut!
Am urmatoarea problema :
Daca [tex]A, B[/tex] sunt matrici patrate de ordin [tex]n\geq1[/tex], cu elemente numere reale, ce verifica [tex]ABA-BAB=I_n[/tex] si [tex]A^{2}B+B^{2}A=O_n[/tex], aratati ca ambele sunt inversabile.
Imi puteti da va rog o idee? :)
Multumesc !

zec

1 e parte din algebra acest gen de probleme
2 ideea e sa cauti sa arati ca detA resp detB sunt nenule.
Cum?Pai va trebui sa folosesti relatia detAB=detAdetB (a nu se confunda cu A,B din problema)
Cauti sa gasesti factor comun .
La prima vedere daca ridici la ptrat prima relatie si folosesti ca [tex]A^2B=-B^2A[/tex] ar putea sa iasa ceva la care sa dai factor comun.

foton01

Citat din: zec din Decembrie 21, 2012, 05:54:55 PM
1 e parte din algebra acest gen de probleme

Asa este...imi cer scuze, am pus la bookmarks direct partea de analiza    :)