Acum, ca sa-ti raspund la intrebarea cu patratul, mie mi se pare ca exista o asociere directa intre conceptul matematic de figura geometrica numit "patrat" cu diverse obiecte inconjuratoare care pot avea o suprafata cu laturile egale. Sigur, ca este o idealizare a suprafetei respective, dar asocierea mi-e cat se poate de clara.
Si totusi, "patratul" nu este o suprafata. Patratul din matematica este o reuniune de 4 segmente, fara grosime (adica unidimensionale). Ce putem gasi in realitate e cel mult "forma de patrat" (aproximativa), dar nu patratul matematic.
Daca si restul lucrurilor ar fi la fel de clare ca si asta, atunci chiar ca n-as avea nici o problema in abordarea oricarui subiect.
Pai uite ca aceasta "corespondenta" intuitiva nu este corecta, in sensul strict. Iar pentru obiectele infinite (ex: semidreapta, plan, suprafata conica) intuitia e si mai neputincioasa.
Eu am inteles ca dintre cele 3 situatii posibile:
curbura zero (univers plat infinit ca si marime dar si nedelimitat, fara frontiere, margini etc)
curbura pozitiva (univers de forma sferica care este finit ca volum dar si ca suprafata, insa tot fara margini...)
curbura negativa (univers infinit cu forma de hiperboloid - sau mai bine zis delimit de o suprafata tip hiperboloid)
probabilitatea cea mai mare este ca sa fie plat prin raportarea la densitatea critica de masa care ia in considerare si energia (de pilda a radiatiei de fond remanente dupa big B.)
Aici faci mai multe erori simultan.
In primul rand, amesteci geometria cu fizica (cosmologia mai precis), adica aplici idei luate de-a valma din matematica unor teorii din fizica. Dat fiind ca nu ai inteles conceptele din matematica, e foarte improbabil sa ajungi la concluzii relevante in partea de fizica a analizei.
In al doilea rand, faci erori grave la nivel de geometrie. Cele "3 situatii posibile" nu sunt nici macar singurele posibile. Iar corespondenta celor trei cazuri geometrice despre care vorbesti in fizica nu este cea presupusa de tine. Cazul cel mai general este o geometrie care combina cele trei tipuri de curburi, adica la nivel local sa intalnim oricare din ele.
Informatiile luate sunt de pe site-ul departamentului de astronomie de la Ohio University. (http://www.astronomy.ohio-state.edu/~ryden/ast162_9/notes40.html).
Am urmarit acest link si am citit ce scrie acolo, dar nu am gasit "informatiile" astea. Te rog sa dai citatul care contine ceea ce ai prezentat tu mai sus (cele 3 posibilitati).
Nu cred sa fi ramas ei cu informatiile in urma, eventual sa zicem ca ar fi posibil sa fi inteles eu gresit! sa admitem asta, dar inainte totusi o sa te rog sa verifici daca este asa.
Am citit pagina respectiva si acolo nu apar "informatiile" prezentate de tine. Din asta deduc faptul ca ori ai inteles gresit ce scrie acolo, ori ai dat alt link din graba.
Subiectul este tocmai curbura universului si ei au identificat cele 3 cazuri pe care le-am amintit. Iar daca este vorba de curbura universului, nu vad de ne-ar interesa ceva local, de ex. in preajma unei gauri negre.
Pagina respectiva prezinta cele trei cazuri intr-un context clar. Tu nu doar ca le-ai scos din context, dar nici nu le-ai prezentat asa cum sunt prezentate pe pagina. Ca te-ai inspirat din acea pagina e posibil, dar pagina aceea nu spune ceea ce spui tu aici.
In cazul curburii pozitive a universului, pe pagina web amintita mai sus se spune f. clar ca in acel caz, volumul universului este finit, delimitat de o suprafata sferica finita a carei curbura este pozitiva.
Unde spune asa ceva pagina amintita? Te rog sa dai citatul corespunzator.
Inca o data, chiar daca ma consideri mai greu de cap,
Nu judec oamenii in acest sens. Aici nu discutam oameni ci idei, ok?
dupa mine o suprafata care are curbura, ar trebui sa aiba si un centru de curbura -adica nu inteleg cum poate avea o curbura calculata fara vreun centru unde sa raportez acea curbura, la suprafata respectiva. Nu discutam despre o anume zona locala a universului, desi si acolo cred ca curbura respectiva ar trebui sa aiba un centru local de curbura.
Ok, pai atunci asta e, de aici vine confuzia pe care o faci.
Ajuta-ma sa inteleg de ce poate exista curbura fara centrul de curbura.
Din celelalte postari am observat ca intre timp ai gasit referinte in acest sens, si se pare ca te-ai mai lamurit. Daca mai ai intrebari concrete, prezinta-le pe forum, asa vei avea ocazia sa discuti cu cat mai multa lume de pe aici.
Pun aceasta intrebare, deoarece in pagina web respectiva se stipuleaza:
" The cosmological principle, if true, implies that the universe cannot have an edge or a center. An observer at the edge of the universe would see a very different view from an observer at the center of the universe, thus violating the cosmological principle. "
Da, e vorba de universul (spatial) 3D. Imaginea pe care o ai prin analogia cu sfera, se pare ca te incurca mai mult decat te lamureste. Te intreb la randul meu: acum iti e clar ce vrea sa spuna citatul de mai sus, si cum e posibil asa ceva in Universul (spatial) 3D?
Ai dreptate, am facut o confuzie grosolana intre curbura suprafetei si raza de curbura a unei curbe.
Ok, e bine ca ti-ai dat seama singur.
Dar, am si o observatie. La pregatirea ta sunt convins ca ai sesizat acest lucru (aceasta confuzie) din primele interventii ale mele.
Esti convis gresit. Eu am sesizat doar ceea ce ti-am raspuns, si anume confuzia dintre "finit/infinit" si "limitat/nelimitat". Cealalta confuzie, dintre curbura unei suprafete si raza de curbura a unei curbe, a reiesit clar pentru mine doar din postarea ta anterioara la care nu am avut timp sa raspund inainte de postarea ta urmatoare. Faptul ca ai amestecat numarul de dimensiuni si finitudinea spatiilor in discutie, m-a impiedicat sa imi dau seama de la inceput ce confuzii faci. (Probabil ca inca faci si altele, dar eu nu le-am identificat precis inca).
Insa m-ai "lasat" in continuare sa persist in confuzie, cand era f. simplu sa punctezi confuzia ca atare.
Asta e impresia ta, dar e gresita. Eu nu las lumea sa persiste in confuziile pe care le remarc. Dovada e faptul ca ti-am subliniat confuzia intre infinit si nemarginit mai devreme. Daca iti corectezi confuzia singur, sau ceri detalii pentru a o clarifica pe forum, e alegerea ta. Eu nu o sa impun nimanui metoda de a-si clarifica confuziile. Eu consider ca e de datoria mea sa atrag atentia cand cineva face o confuzie, de acolo fiecare avanseaza cum doreste. Daca cere cineva ajutor, eu voi incerca sa ajut (vezti sectiunea de teme pentru acasa pt exemple). A ajuta "cu forta" insa nu imi sta in caracter.
Nu sunt suparat, e- dar stau sa ma gandesc daca asta nu e cumva o "placere ascunsa" a ta de a lasa pe unii sa persiste intr-o greseala, cand ai putea sa o indrepti mult mai rapid.
Nu ma supar, desi esti in eroare. Nu imi face placere sa las lumea sa persiste in greseala. Daca activitatea mea de pe acest forum nu te convinge de asta, atunci asta e. Cea mai mare placere in acest context (de invatare) este sa vad pe ceilalti cum isi corecteaza singuri erorile, in urma unei intelegeri reale, nu ca acceptare a unor "adevaruri" impuse de mine. De aceea prefer sa dau indicii, sa pun intrebari care sa ajute pe ceilalti sa gandeasca singuri. Raspunsurile "mura in gura" nu imi plac deloc, si nici nu le prea dau altora.
Daca ma insel, in cer scuze ptr. o alta eroare a intuitiei mele, iar daca e adevarat nu te judec, nu te obliga nimeni sa fii profesorul nimanui. Dupa cum vezi, sunt sincer si-ti prezint deschis gandurile mele.
Da, apreciez sinceritatea ta, si nu ma supar desi te inseli in ce priveste intentiile mele. Eu nu o sa-ti impun sa crezi anume lucruri despre mine. Urmareste activitatea mea de pe forum si fa-ti o idee singur. Asta e singura mea "carte de vizita" relevanta aici.
Totusi, ptr. a-i ajuta pe altii sa nu cada in aceeasi confuzie, postez aici un link pe acest subiect:
http://anulmatematicii.ro/articol/curbura-gaussiana-si-curbura-riemanniana
Da, interesant articol. Nu prea stiu daca notiunile folosite acolo vor clarifica aceste lucruri celor care nu stapanesc prea multa geometrie.
Si ca sa vezi ca sunt dornic de invatare, am sa revin cu intrebari pe marginea subiectului in lumina noilor informatii.
Esti binevenit cu intrebari. Sper sa ai mereu cu cine sa discuti (in nici un caz nu am eu vreun monopol in acest sens).
Revin cu o informatie suplimentara.
Tot cautand unele informatii pe marginea subiectului am gasit acest link (http://coldcreation.blogspot.ro/2020_09_01_archive.html) care trateaza exact acest subiect
Sper sa am timp sa o parcurg, am vazut ca pagina e mult mai detaliata decat articolul precedent.
(de fapt este o interventie pe un alt forum similar de stiinta - precizez stiinta PTR. TOTI, precizez asta ptr. a sublinia nevoia de mai multa ingaduinta ptr. profani, care fie n-au pregatirea necesara, fie fac confuzii sau alte erori de abordare. Eu ma regasesc in aceasta categorie,
Ce intelegi tu prin "mai multa ingaduinta"? Ce nu ti s-a ingaduit sa faci aici?
Fie ca esti novice fie ca esti expert, daca gresesti, ceea ce poti spera pe acest forum este ca cineva sa fie dispus sa-ti indice eroarea si sa te ajute sa ti-o corectezi. Ce are ingaduinta cu asta? Vrei sa "trecem cu vederea" erorile unora, in functie de anumite criterii? De ce s-ar face o astfel de discriminare pe un forum de popularizare a stiintei?
dar vreau sa dau o mana de ajutor celor care vor sa aprofundeze subiectul. Revin la materialul respectiv, cred ca este f. interesant de parcurs si are multe ilustratii sugestive + explicitarea notiunilor folosite care dupa mine este esential ptr. intelegerea problemei.
Un efort deosebit al autorului, de care pot si altii beneficia.
La prima vedere pagina e intr-adevar interesanta. Daca voi avea comentarii dupa lecturarea ei, voi reveni la asta.
e-