Deci pe scurt, pentru tine, dacă un experiment nu confirmă teoria, fie datele experimentale sunt greşite, fie "joacă murdar" şi o încalcă? Ceva de genul ăsta zice şi biserica ortodoxă
.
Nu, n-ai înţeles. Şi mai fac un efort, probabil ultimul, dacă aduci elemente jignitoare în discuţie. Este ceva de genul: dacă teoria spune că o linie dreaptă are anumite proprietăţi, iar experimentul arată că o traiectorie nu are proprietăţile acelea, atunci experimentul nu are dreptul să spună că traiectoria aceea este o linie dreaptă. Restul mai aprofundează şi tu. Poate vei reuşi să înţelegi.
Lancretianul mingii nu poate fi calculat teoretic, pentru că ar trebui să luăm în considerare toţi factorii din Univers.
Cu acest argument, ajungem la concluzia ca nici un "lancretian" nu poate fi calculat teoretic, oricare ar fi traiectoria considerata. Cu alte cuvinte "fizica elicoidala" nu poate face predictii teoretice legat de valoarea "lancretianului".
Da, într-un anumit fel, nu poate fi calculat niciun lancretian al vreunei traiectorii, dacă nu ştim nimic experimental despre ea înainte (iar asta este imposibil). Trebuie să ştim ceva experimental despre ea sau să presupunem ceva aproximativ despre ea ca să o putem include în teorie. Trebuie să presupui că traiectoria mingii are o anumită ecuaţie ca să poţi calcula lancretianul ei. De exemplu, trebuie să presupui că mingea descrie o elice faţă de Soare, la fel ca şi suprafaţa Pământului (deci trebuie să presupui o valoare dată a lancretianului). Teoria îţi dă doar consecinţele presupunerilor tale. Dacă presupunerile tale sunt corecte, atunci cu ajutorul Fizicii elicoidale ajungi la alte concluzii corecte. Dacă, în schimb, presupunerea ta iniţială este greşită, atunci este foarte posibil ca folosind Fizica elicoidală să ajungi la concluzii greşite.
Daca nu putem lua in considerare toti factorii din Univers, pe baza carui argument sustii tu ca, tocmai factorii ignorati nu conduc la o torsiune nula a traiectoriei?
Teoria (Fizica elicoidală) spune că dacă porneşti cu un lancretian oarecare finit, ajungi tot la un lancretian finit, orice transformări ai face. Deci, teoretic nu poţi avea torsiune nulă dacă există un reper faţă de care ea nu este nulă.
Valorile de pozitie determinate experimental nu au precizie infinita ci sunt intotdeauna caracterizate de o marja de eroare. Asta inseamna ca ele singure nu pot oferi valori exacte pentru nici o functie legata de miscarea corpurilor reale.
De acord. Atunci nu putem face altceva decât să presupunem că un corp descrie o anumită traiectorie, dar presupunerile noastre nu pot fi hazardate, ci trebuie să se încadreze în teoriile pe care le cunoaştem. Dacă o teorie spune că între o elice de ordinul n şi o elice de ordinul n+1 nu există alt tip de traiectorie, ar fi absurd să presupunem că traiectoria unui corp este o „elice de ordinul n/2” să zicem.
Deci, daca eu obtin dintr-o teorie o valoare anumita, sa zicem x, si apoi determinam experimental o valoare y cu marja de eroare +/- epsilon, putem spune ca practica a confirmat teoria daca valoarea x apartine intervalului (y-epsilon, y+epsilon). Cu alte cuvinte, daca eu vorbesc aici despre o torsiune care teoretic e zero (in cazul traiectoriilor plane), iar experimental obtin niste valori care, in intervaul dat de incertitudinea experimentala includ valoare zero, atunci in Stiinta se considera ca practica a confirmat asteptarile teoretice. Esti de acord cu asta?
Din păcate, nu sunt în totalitate de acord cu asta. Nu putem face orice extrapolări. Mai precis, nu putem face extrapolări interzise de o teorie confirmată deja experimental (prin alte date mai precise). Dacă formulele lui Frenet (care au fost confirmate de experienţe mult mai precise) şi consecinţele lor matematice (teorema de recurenţă) ne spun că traiectoriile plane sunt „ciudate”, atunci nu pot admite că o traiectorie este plană neglijând micile ei variaţii de la o curbă plană.
Te intreb deci: tu consideri ca nici macar teoretic traiectoriile plane nu au torsiune zero
Prin definiţie, traiectoriile plane au torsiunea nulă (şi reciproc) (pentru că binormala lor nu variază). Deci, teoretic, orice traiectorie plană are torsiunea nulă. Problema se pune dacă teoria permite existenţa traiectoriilor plane. Ei bine, Matematica permite existenţa oricărui fel de curbe, dar Fizica elicoidală nu.
sau doar ca, din cauza distributiei mteriei in Univers si a influentei acesteia, traiectoriile plane sunt foarte improbabile?
Într-adevăr, o analiză experimentală a mişcărilor scoate în evidenţă faptul că nu putem găsi repere faţă de care traiectoriile să fie plane. Şi asta este în acord excelent cu Fizica elicoidală.
Daca "fizica elicoidala" poate demonstra ca traiectoriile plane sunt imposibile, astept sa prezinti aici demonstratia.
Teorema de recurenţă ne arată că lancretianul unei traiectorii este o funcţie fundamentală în studiul curbelor. Atunci, Fizica elicoidală, bazată pe această teoremă (spre deosebire de Fizica actuală), se referă doar la corpuri care nu se pot mişca altfel decât pe traiectorii cu lancretian bine definit. Lancretianul infinit nu este un lancretian bine definit, deci este exclus de Fizica elicoidală. Desigur că Matematica îl permite, dar nu şi Fizica elicoidală. Dacă vrei, Fizica elicoidală postulează că lancretianul traiectoriei oricărui corp din Univers este (bine de)finit.
În altă ordine de idei, şi în Fizica elicoidală există două tipuri de repere, inerţiale şi neinerţiale, doar că ele sunt definite altfel, mai concret decât în Fizica actuală. Prin definiţie, numim reper inerţial acel reper care modifică doar valoarea lancretianului, fără să modifice ordinul său de derivare. De exemplu, faţă de două repere inerţiale o traiectorie poate avea lancretianul constant, dar diferă valoarea sa în cele două repere.
De asemenea, tot prin definiţie, un reper este neinerţial dacă el modifică ordinul de derivare al lancretianului. Mai precis, dacă într-un reper lancretianul este constant, atunci într-un reper neinerţial lancretianul este variabil.
Dar, oricât de diferite ar fi cele două repere, ele nu pot transforma lancretianul din finit în infinit, pentru că şi reperele însele se bazează tot pe corpuri cu lancretian (bine de)finit.
Functiile crescatoare se pot anula pe intervale oricat de lungi. Doar functiile strict crescatoare nu se pot anula decat intr-un singur punct.
Dacă aprofundezi teorema de recurenţă, constaţi că torsiunea este radicalul unei sume de pătrate. Suma de pătrate este cu atât mai mare, cu cât lancretianul este mai complicat (este mai variabil, poate fi derivat de mai multe ori). În sensul acesta concret, torsiunea este o funcţie crescătoare.
Sper că aceste detalii vor clarifica multe lucruri.
Abel, nu pot urmari consecintele, dar ai incercat sa consideri torsiunea unei curbe plane 1? Ce s-ar
intampla?
Torsiunea unei curbe plane este prin definiţie nulă. Dacă aş considera că este 1, atunci ar trebui să admit că nu este vorba de o curbă plană.