De fapt recitind acest capitol respectiv Geometrie cu difeitele si putinele ei fire fata de altele pline de, vorba lui Calahan citat de Electron sau poate invers, respectiv elucubratii, constat ca asta este firul la care am intervenit si eu acum ceva vreme(2015) si care este cel mai potrivit continuarii disctutiei despre postulatul(axioma 5) lui Euclid ceea ce ma scuteste sa deschid eu un fir cu un titlu potrivit.
Este un fir deschis acum 7 ani de un vizitator, Mihnea Maftei caruia chiar i-am si promis ca la el voi reveni cand voi fi pregatit sa fac o anume discutie referitoare la cele spuse de exemplu de Farkas Bolyai referitor la marea dificultate a problemeiaxiomei paralelelor. care preocupa geometrii in epoca sa
El a scris:„Dacă cineva va găsi demonstraţia axiomei paralelelor, ar merita un diamant cât Pământul de mare.”….
„cui îi va reuşi aceasta, acestuia, muritori, să-i ridicaţi un monument nepieritor.”
Ei! nici chiar asa! mai ales ca nu cred ca asta ar schimba ceva din stiinta matematica a geometriei dar subiectul desigur ca merita orice osteneala, asa ca raman cu el aici si Zec daca va dori, va veni el aici dupa problema.
Mai sunt cativa care sper sa apara caci se pare ca nu au parasit total forumul.

Asadar putem sa-l bucuram macar si dupa aproape peste 200 ani pe profesorul Farkas Bolyai care a studiat axioma paralelelor şi a remarcat faptul că aceasta este independentă de celelalte axiome ale geometriei. Mai mult, a reuşit să formuleze alte opt enunţuri echivalente ale acestei axiome(una, nu stiu daca se afla printre acestea, este cea preferata de userul Ion Adrian, respectiv unicitatea perpendicularei inlocuind-o pe cea a unicitatii paralelei care azi si-a cucerit locul de cea mai potrivita exprimare a postulatului cu numarul 5).
Dar si pe fiul sau marele Janos Bolyai care a demonstrat că celebra axiomă a paralelelor este independentă de celelalte axiome ale geometriei şi a dedus că geometria lui Euclid nu este unica posibilă şi că se poate dezvolta o nouă geometrie mai generală pe care a denumit-o ştiinţa absolută a spaţiului, deci o geometrie independentă de cea clasică, pe care ulterior a fost denumita geometrie hiperbolică neeuclidiană. Geometria euclidiană era deci un caz limită al geometriei hiperbolice in care suprafata devine plana
Bibliografia pe care o voi folosi va fi minimal dar foarte bun adica o traducere englezeasca din greaca a Elementelor lui Euclid:
http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0086%3Abook%3D1%3Atype%3DDef%3Anumber%3D1Sper sa o vedeti cat de cat ca sa vorbim despre aceleasi lucruri daca veti dori sa ma insotiti in aceasta excursie axiomatica in geometria euclidiana.
PS Cu scuze pentru cateva corectii facute azi 13 aprilie