De cand am aflat despre existenta geometriei neeuclidiene (acum mult timp), ma nedumereste o chestiune.
Nu am avut niciodata un curs despre geometria neeuclidiana, dar, din cate inteleg, geometria euclidiana este una in care postulatul al 5-lea al lui Euclid, cunoscut si ca "axioma paralelelor", nu este adevarat. Axioma paralelelor spune ca printr-un punct exterior unei drepte trece o singura (nu zero sau mai multe) dreapta paralela cu prima dreapta. In cadrul geometriei euclidiene pot trece mai multe drepte paralele...
Precizez ca, de fapt, "geometria neeuclidiana" este un termen general care include o categorie de geometrii, nu doar una. Printr-o geometrie, inteleg, in sens larg, un sistem coerent de axiome si tot ce rezulta din ele.
Nedumerirea mea este urmatoarea: In geometriile neeuclidiene, sunt notiunile de "dreapta" si "paralel" definite diferit fata de notiunile de "dreapta" si "paralel" din geometria euclidiana? Daca e asa, atunci nu ar trebui sa se spuna ca in geometriile neeuclidiene postulatul al 5-lea al lui Euclid nu e adevarat, pentru ca acest postulat foloseste alte definitii pentru "dreapta" si "paralel". Sau in geometriile neeuclidiene se folosesc aceleasi definitii pentru acele notiuni? Daca se folosesc aceleasi definitii, atunci imi e greu sa vad cum postulatul al 5-lea al lui Euclid poate fi considerat si adevarat si fals.
In timp ce am scris aceasta postare, am mai citit un pic si inteleg ca notiunea de "paralel" se poate referi la trei chestiuni:
1. Dreptele paralele sunt cele care nu se intersecteaza (dar apartin aceluiasi spatiu bidimensional...)
2. Dreptele paralele sunt cele intre care distanta e constanta.
3. Dreptele paralele sunt cele care formeaza unghiuri egale cu o alta dreapta care le intersecteaza.
In geometria euclidiana, toate cele trei chestiuni coincid.
Imi poate cineva raspunde la nedumerirea exprimata mai sus...? Multumesc.