Important: S-a intamplat ceva si aceasta postare a aparut in alta parte pe fir asa ca o repostez aic unde ii este locul. Am specificat acest fapt si in acel fir ila « Răspuns #2 : Mai 08, 2020, 12:30:27 p.mMa bucur ca ai revenit la intentii mai bune la care nu stiu de ce nu ai ramas sau nu te-ai pozitionat de la inceput intrucat eu din start propusesem problema ca una de geometrie plana si nici decum altfel,caci am scris in prima postare:"Totusi sper ca macar in materie de geometrie plana si euclidiana sa mai existe careva care sa aiba curaj, asa ca lansez o tema probabil ca foarte scurta si poate chiar simpla, dar care pe mine m-a blocat intr-o anume problema si o supun atentiei dvs, desigur batandu-mi si eu capul in continuare, caci fata de cele ce s-au intamplat in ultima vreme cand un Zec -geometru, nu a mai aparut si cand de la cei de profesie demolatori mai mult sau mai putin sofistici (Socrate ar fi mai in masura sa-i califice) neobtinand niciodata o contributie personala originala nu am a ma astepta la ceva efectiv, decat daca voi oferi eu o solutie atunci poate sa incerce ei imediat sa o arunce in aer iesind astfel din tacerea indiferenta in care se drapeaza.
Si acum tema firului:
Stie cineva sa demonstreze
de ce o oblica este cu atat mai lunga cu cat piciorul ei este mai departat de piciorul perpendicularei fata de care este ea o linie oblica? "
Nota de azi: Si dupa o oarecare asteptare in care timp firul acesta de geometrie banala s-a deplasat in spatele unora "deosebit de interesante" urmarite asiduu de cativa contributori, am revenit odata si inca odata ca sa-l readuc in atentie si am scris a treia oara repetand:
"Asadar revin cu intrebarea daca la o intrebare cred eu consistenta,
de geometrie plana euclideana de nivel de liceu nu s-a gasit nimeni sa ma ajute dar nici nu au fost prea multi interesati, mai am vreo sansa sa primesc raspuns sau camarila ticalosilor de care este plina lumea va ateriza si aici si ma impiedeca sa primesc raspunsuri?"

Nota: O remarca mai colorata caci asa este stilul meu dar e de remarcat ca nu prea se inghesuisera prea multi sa citeasca, insa dupa ce apoi a intervenit dl Mot in mod oarecum polemic si nu stiu de ce asta, s-au inghesuit mai multi sa intre pe fir. Poate de aceea a dat el aceasta tenta polemica ca raspuns la temerea mea referitoare la o posibila camarila a ticalosilor si el, Mot om cu frica lui Dumnezeu si stim asta din declaratii trecute ale Dsale, a dorit sa arate ca aceasta nu ar fi atat de compacta cat ma ingrijoram eu
Dar interventia sa nu prea a avut legatura cu tema data de mine pe care eu cred ca doar s-a facut ca nu o intelege incercand sa ma mute in spatiu si mai tarziu si in neeuclideana desi cum s-a vazut eu in permanenta subliniasem domeniul in care era circumscrisa problema data de mine.
Cine vede vede acestea si trece peste erorile de tastare pe care Mot mi le reaminteste si din care imi reprosez doar o neatentie, deci o eroare efectiva cand am scris 2Pi in loc de Pi si in mod cert nu as fi scris 360 grade in loc de 180 grade, poate observa ca i-am raspuns la intrebari care chiar vadit carcotase nu m-au determinat sa fiu la fel ci le-am raspuns la modul serios unora carora nu era locul acum doar promitand sa le raspund efectiv mai tarziu dupa ce subiectul topicului s-ar fi epuizat pentruca eu nu intentionez sa procedez ca cu doua paralele pe care unii competitori de aici le parcurg la infinit ca sa vada prin proprie actiune ca nu se intalnesc si in concluzie discutia lor poate sa fie si ea tot asa la infint. La acest gen de discutie am spus eu si acum nu mai parafrazez: ca denota o placere de masturbare intelectuala gratuita si cred ca am mai spus ca seamana probabil cu discutiile din Bizantul aproape cucerit de turci care puneau problema deosebit de importanta pe cat de spinoasa asupra sexului ingerilor.
Asadar revin la tema : demonstratia lui Mot este facuta in geometria euclidiana post postulat, apeland la trigonometrie si chiar explicit la suma unghiurilor in triunghi egala cu Pi care este consecinta imediata a postulatului si-l poate inlocui cu axioma sumei unghiurilor in triunghi care in geometria absoluta adica in absenta impunerii postulatului este demonstrat de Legendre ca este mai mica sau cel mult egala cu Pi (iar eu spun ca el chiar a reusit sa demonsteze ca este Pi adica mi-a luat-o inainte cu doua sute de ani in a arata pa postulatul 5 este o teorema valabila in geometria absoluta(neutra) reamintind ca si teoremele din Elemente sunt pana la cea cu nr 29 independente de postulatul paralelelor.
Ca sa fiu carcotas intreb daca "presupunând prin absurd că B2C=B1C" nu te duce si la ideea ca poate B2C>B1C? Nu trebuie sa raspunzi ca iar intram pe discutii de alea ingeresti si asa ma voi referi in viitor ca sa nu se mai strofoce Electron la trimiterile spre insoritele plaje.
De altfel faptul ca AB2>AB1 daca apelezi la trigonometrie rezulta din formula tangentei.
Dar AB2>AB1 nu este cerinta problemei ci CB2>CB1 Dar daca AB2>AB1 din teorema lui Pitagora rezulta cerinta problemei cum ca CB2>CB1
Asa ca daca ai luat-o pe drumul incercarii sa demonstrezi problema data poate reusesti sa o faci fara sa apelezi la trigonometrie si fara postulatul paralelelor pentruca cred ca se poate face asa sau cine stie sa demonstezi ca este imposibil sa fie adevarata daca nu se apeleaza la postulat.
PS: Daca observi o greseala de scriere si nu numai este mai colegial sa mi-o semnalezi si chiar sa o indrepti din oficiu daca este evident ce doream sa spun.
Numai bine