Lancretianul mingii nu poate fi calculat teoretic, pentru că ar trebui să luăm în considerare toţi factorii din Univers.
Cu acest argument, ajungem la concluzia ca nici un "lancretian" nu poate fi calculat teoretic, oricare ar fi traiectoria considerata. Cu alte cuvinte "fizica elicoidala" nu poate face predictii teoretice legat de valoarea "lancretianului".
Daca nu putem lua in considerare toti factorii din Univers, pe baza carui argument sustii tu ca, tocmai factorii ignorati nu conduc la o torsiune nula a traiectoriei?
Deci rămâne să-l determinăm experimental, cu o aproximaţie oarecare.
Valorile de pozitie determinate experimental nu au precizie infinita ci sunt intotdeauna caracterizate de o marja de eroare. Asta inseamna ca ele singure nu pot oferi valori exacte pentru nici o functie legata de miscarea corpurilor reale.
Deci, daca eu obtin dintr-o teorie o valoare anumita, sa zicem x, si apoi determinam experimental o valoare y cu marja de eroare +/- epsilon, putem spune ca practica a confirmat teoria daca valoarea x apartine intervalului (y-epsilon, y+epsilon). Cu alte cuvinte, daca eu vorbesc aici despre o torsiune care teoretic e zero (in cazul traiectoriilor plane), iar experimental obtin niste valori care, in intervaul dat de incertitudinea experimentala includ valoare zero, atunci in Stiinta se considera ca practica a confirmat asteptarile teoretice. Esti de acord cu asta?
Te intreb deci: tu consideri ca nici macar teoretic traiectoriile plane nu au torsiune zero, sau doar ca, din cauza distributiei mteriei in Univers si a influentei acesteia, traiectoriile plane sunt foarte improbabile? Daca "fizica elicoidala" poate demonstra ca traiectoriile plane sunt
imposibile, astept sa prezinti aici demonstratia.
e-