Ştiri:

Vă rugăm să citiţi Regulamentul de utilizare a forumului Scientia în secţiunea intitulată "Regulamentul de utilizare a forumului. CITEŞTE-L!".

Main Menu

Calcul de limite de siruri

Creat de b12mihai, Martie 01, 2010, 12:02:43 AM

« precedentul - următorul »

0 Membri şi 1 Vizitator vizualizează acest subiect.

b12mihai

In acest topic invit pe cei care au intrebari la calculul de limite de siruri sa ni le adreseze aici...

Incep eu cu limita unui sir, care se presupune ca ar trebui calculat folosind sume Riemann, dar nu am nici o idee cum se poate face:

[tex] \lim_{n \to \infty} \ \frac{1}{n^2} \displaystyle\sum_{k=1}^{n}e^{\frac{k^2}{n^2}} [/tex]
Fiecare are scopul lui in lumea asta nebuna.

laurentiu

#1
Problema e "smechera",de fapt nu trebuie sa calculezi limita .Daca vei calcula limita [tex]\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^n e^{\frac{k^2}{n^2}}=\int_0^1 e^{x^2}dx [/tex],e clar ca limita asta exista si e finita si e egala cu integrala pe care am calculat-o .Sirul tau e sirul meu impartit la n ,si ceva finit supra infinit da 0 ,deci limita este 0.
Sau mai aveai o posibilitate:observai ca [tex]e^{\frac{k^2}{n^2}}<e^1=e [/tex] deci aveai [tex]0\le x_n\le\frac{ne}{n^2}[/tex],unde x_n este sirul tau .Acu aplicand clestele iti dadea limita 0 . :)

b12mihai

CitatProblema e "smechera",de fapt nu trebuie sa calculezi limita .Daca vei calcula limita [tex]\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^n e^{\frac{k^2}{n^2}}=\int_0^1 e^{x^2}dx [/tex] ,e clar ca limita asta exista si e finita si e egala cu integrala pe care am calculat-o .Sirul tau e sirul meu impartit la n ,si ceva finit supra infinit da 0 ,deci limita este 0.

Ah, ce chestie  :D  eu am zis ca limita sirului xn este [tex]\int_0^1 e^{x^2}dx[/tex] (si nu aveam idee cum s-ar putea calcula vreodata integrala asta cu ce stiu pana acum), dar acum imi dau seama ca era o prostie ce era in capul meu!

Corect! Multumesc mult!
Fiecare are scopul lui in lumea asta nebuna.

b12mihai

Propun o problema mai complicata un pic:

Fie [tex] a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + ... + \frac{1}{n^2} [/tex]

a) Demonstrati ca sirul [tex](a_n)_{n \in \mathbb{N}^*}[/tex] este convergent
b) Demonstrati ca [tex] \lim_{n \to \infty} a_n = \frac{\pi^2}{6} [/tex]
c) Calculati [tex]\lim_{n \to \infty} \displaystyle\sum_{k=1}^{n}\frac{1}{(2k-1)^2} [/tex]

Cel mai greu este punctul b)...nu am reusit sa ii dau de cap deloc, nu am nici o idee cum as putea sa il incep ???...a) se face relativ usor, iar pt c) se foloseste limita de la b).
Fiecare are scopul lui in lumea asta nebuna.

laurentiu

Nu ii vei da toata viata de cap daca nu cumva esti vreun Lagrange sau alt mare matematician :))
Revin si eu cu solutia ,dar trebuie sa o caut prin carti ca altfel nici eu nu stiu .Solutia am vazut-o anul trecut si am uitat-o

graethel

Citat din: gothik12 din Martie 15, 2010, 04:49:06 PM
b) Demonstrati ca [tex] \lim_{n \to \infty} a_n = \frac{\pi^2}{6} [/tex]

Eu stiu sa demonstrez cu serii Fourier si teorema lui Parseval, dar am invatat asta in facultate. Totusi poate linkul asta contine o rezolare la nivelul cunostiintelor tale:

http://en.wikipedia.org/wiki/Basel_problem

laurentiu

Cea mai elementara este cu dezvoltarea in serie Taylor infinita ,care este dupa cunostintele mele in programa de olimpiada nationala a clasei a X-a .Bietii copii :))
Nu mi-am dat seama sa caut pe wikipedia ,eu stiam o solutie folosind ceva cu tangenta si inversa ei ,dar nu o mai gasesc

Lumina

#7
Citata) Demonstrati ca sirul [tex](a_n)_{n \in \mathbb{N}^*}[/tex] este convergent
Desi este o notiune elementara, o voi demonstra:
Folosm inegalitatea [tex]
\frac{1}{{k^2 }} \le \frac{1}{{k\left( {k + 1} \right)}} = \frac{1}{k} - \frac{1}{{k + 1}}

[/tex]
Dand valori lui k se obtine chiar sirul tau care este <= cu sirul indicat care este un sir marginit, cum? clasa a 5.

Lumina

#8
Citatc) Calculati [tex]\lim_{n \to \infty} \displaystyle\sum_{k=1}^{n}\frac{1}{(2k-1)^2} [/tex]
Este la fel de banala ca pucntul a:
[tex]
\begin{array}{l}
{\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\frac{1}{{\left( {2k - 1} \right)^2 }}}  = \mathop {\lim }\limits_{n \to \infty } \left[ {1 + \frac{1}{{2^2 }} + \frac{1}{{3^2 }} + .... + \frac{1}{{\left( {2n} \right)^2 }} - \left( {\sum\limits_{k = 1}^n {\frac{1}{{\left( {2k} \right)^2 }}} } \right)} \right] \\
  = \frac{{\pi ^2 }}{6} - \frac{1}{4} \cdot \frac{{\pi ^2 }}{6} \\

[/tex]

Lumina

Problema b este o problema mai frumoasa decat restul, cand vei ajunge la faculta o vei rezolva in 2..3 randuri, dar totusi am sati arat cea mai frumoasa rezolvarea pe care am vazuto vreodata la problema asta, o gasesti aici uitete la demonstratia lui Omegatheo, nu sunt de neglijat si celelalte solutii  ;)

Electron

Citat din: Lumina din Septembrie 03, 2010, 12:52:06 AM
Problema b este o problema mai frumoasa decat restul, cand vei ajunge la faculta o vei rezolva in 2..3 randuri, dar totusi am sati arat cea mai frumoasa rezolvarea pe care am vazuto vreodata la problema asta, o gasesti aici uitete la demonstratia lui Omegatheo, nu sunt de neglijat si celelalte solutii  ;)
Off topic: Lumina, ai mai multa grija cu ortografia limbii romane.

e-
Don't believe everything you think.

Lumina

CitatOff topic: Lumina, ai mai multa grija cu ortografia limbii romane.
Sunt matematician nu profesor de română  ;)
Apropo, am greşit un pic la inegalitatea:[tex]\frac{1}{{k^2 }} \le \frac{1}{k} - \frac{1}{{k - 1}}[/tex]
este:[tex]\frac{1}{{k^2 }} \le \frac{1}{{k - 1}} - \frac{1}{k}[/tex]
Cred că aţi prins ideea


Electron

Off Topic (cu asta chiar inchei si nu mai insist) :
Citat din: Lumina din Septembrie 03, 2010, 03:09:42 PM
Sunt matematician nu profesor de română  ;)
Daca esti matematician, ar trebui sa aplici macar logica. A fi profesor de romana nu este o conditie nici necesara nici suficienta pentru a scrie corect gramatical.  :P

e-
Don't believe everything you think.

Lumina

M-ai făcut să râd electron, pentru asta îţi mulţumesc.
Îmi critici posturile, dar te-ai uitat cum scrii tu ?
Nu vreau să jignesc pe nimeni, forumul acesta m-a ajutat de câteva ori, însă atitudinea lui e- nu este corectă, aplică regula "critic fără a fi criticat" .

Stark

#14
Poti consulta un nr de demonstratii pe linkul de la MathWorld .
Varianta in care este folosita teorema coeficientului liniar pentru relatii intre radacini (Vieta) mi se pare  de parte cea mai simpla si surprinzator de "elementara". :) La fel de entuziast sunt si la ideea de a folosi identitatea Moivre. Voi ce spunetzi?

Deasemenea am  gasit un articol foarte interesant Values of the Riemann Zeta Functions at Integers.