Welcome, Guest. Please login or register.

Autor Subiect: Probleme analiza ,clasa a XII-a(fara calcul de integrale)  (Citit de 8013 ori)

0 Membri şi 1 Vizitator vizualizează acest subiect.

laurentiu

  • Vizitator
Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« : Februarie 16, 2010, 08:21:00 p.m. »
In special pt Gothik ,despre care am auzit ca are concurs sambata asta ,dar si pt alti useri ,propun spre rezolvare urmatoarele probleme ceva mai complicate,gen olimpiada .Mentionez din start ca eu stiu sa le rezolv ,dar sunt un bun exercitiu pt concursuri:
1.Fie f:[a,b]\rightarrow\mathbb{R} continua:
a)Aratati ca exista c_1\in(a,b) a.i. \int_a^{c_1} f(x)dx=(b-c_1)f(c_1);
b)Aratati ca exista c_2\in(a,b) a.i. \int_{c_2}^b f(x)dx=(c_2-a)f(c_2);
c)Aratati ca exista c_3\in(a,b) a.i. \int_a^{c_3} f(x)dx+\int_b^{c_3} f(x)dx=(b+a-2c_3)f(c_3).

2.Fie f:[0,1]\rightarrow\mathbb{R} continua a.i. \int_0^1 f(x)dx=0.Atunci pt orice n natural nenul existac_n\in(0,1) a.i. \int_0^{c_n} f(x)dx + {c_n}^nf(c_n)=0.Aratati ca este adevarata proprietatea si daca intre \int_0^1 f(x)dx si c^nf(c) este semnul minus.


Offline b12mihai

  • Senior
  • ****
  • Mesaje postate: 1124
  • Popularitate: +2/-0
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #1 : Februarie 17, 2010, 02:46:30 p.m. »
Foarte interesante problemele, dar nu am nici cea mai vaga idee cum s-ar putea face (macar da sugestie de rezolvare sau, in fine, teoria pe care o s-o folosesc ;D te rog)...Cred ca pentru primul exercitiu, banuiesc ca trebuie folosita teorema de medie  ???


« Ultima Modificare: Februarie 17, 2010, 02:48:39 p.m. de gothik12 »
Fiecare are scopul lui in lumea asta nebuna.

laurentiu

  • Vizitator
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #2 : Februarie 17, 2010, 03:53:35 p.m. »
Pt prima problema punctul a) incearca teorema Rolle pt functia g:[a,b]\rightarrow\mathbb{R} ,g(x)=(b-x)\int_a^x f(t)dt.Cred ca poti sa vezi clar ca functia aceasta indeplineste conditiile din teorema lui Rolle ,deci exista un punct c_1\in(a,b) a.i. g'(c_1)=0 .Prin calcul obtii punctul care ti se cere in concluzie .Aceeasi idee la b) si la c).
 Problema 2 e nitel mai complicata ,dar tot cu Rolle se face .Incearca sa gasesti o functie care sa indeplineasca conditiile din Rolle a.i. prin derivarea ei sa obtii relatia care ti se cere.

laurentiu

  • Vizitator
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #3 : Februarie 17, 2010, 04:02:55 p.m. »
Si una inventata de mine (nu prea bine zis inventata ,cred ca ideea ei este de multisor in probleme ,dar cel putin eu n-am gasit-o pe nicaieri:
Fie F=\{f:[0,1]\rightarrow\mathbb{R}\| f derivabila si \int_0^1 f(x)dx=\int_0^1 x^2f(x)dx=0\}.
a)Sa se arate ca \|F\|\ge 3;
b)Pentru o functie f\in F notam a(f)=inf\{f^{\prime}(x)\|x\in[0,1]\} si b(f)=sup\{f^{\prime}(x)\|x\in[0,1]\}.Sa se arate ca \int_0^1 f^2(x)dx\le -\frac{a(f)b(f)}{12}.

PS:in general dupa cum am observat noua moda la concursurile interjudetene din ultimul timp este "imprumutul" probleme de pe forumuri de matematica ,iar problema aceasta am postat-o pe mateforum.ro ,deci nu ar fi imposibil ca aceasta problema sa pice la vreun concurs ,poate si la cel care participa Gothik.

laurentiu

  • Vizitator
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #4 : Februarie 17, 2010, 04:11:41 p.m. »
Sau o problema cu teorema de medie daca te intereseaza :
Fie f:\mathbb{R}\rightarrow[0,\infty) o functie continua, periodica de perioada 1 .Sa se arate ca \lim_{n\to\infty} \int_0^1 f(x)f(nx)dx=\(\int_0^1 f(x)dx\)^2 .
Indicatie:se foloseste teorema de medie pe toate intervalele \[\frac{k-1}{n},\frac{k}{n}\].

Offline b12mihai

  • Senior
  • ****
  • Mesaje postate: 1124
  • Popularitate: +2/-0
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #5 : Februarie 17, 2010, 06:42:55 p.m. »
Citat
PS:in general dupa cum am observat noua moda la concursurile interjudetene din ultimul timp este "imprumutul" probleme de pe forumuri de matematica ,iar problema aceasta am postat-o pe mateforum.ro ,deci nu ar fi imposibil ca aceasta problema sa pice la vreun concurs ,poate si la cel care participa Gothik.

Interesant ce imi spui pe aici. Singura 'problema' e ca la concursul la care sunt "angrenat" e cu grila (sa pui raspuns direct, fara demonstratii - asa cum sunt la admitere la ASE/Politehnica si altele), deci nu stiu daca ar putea "imprumuta" problemele acestea. Foarte posibil ultima, cu limita sa o dea, particularizand-o si punandu-ma sa calculez concret ceva.

Oricum, trebuie sa pun mana pe creion si pe foaie si sa ma apuc de treaba  ;D
« Ultima Modificare: Februarie 17, 2010, 06:45:27 p.m. de gothik12 »
Fiecare are scopul lui in lumea asta nebuna.

Offline b12mihai

  • Senior
  • ****
  • Mesaje postate: 1124
  • Popularitate: +2/-0
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #6 : Februarie 25, 2010, 03:52:00 p.m. »
Propun o problema ceva mai simpla, dar cu o rezolvare foarte interesanta si la care se foloseste rezultatul de la exercitiul mai jos citat:

1.Fie f:[a,b]\rightarrow\mathbb{R} continua:
a)Aratati ca exista c_1\in(a,b) a.i. \int_a^{c_1} f(x)dx=(b-c_1)f(c_1);

Fie  f: [a,b] \to \mathbb{R}, o functie de doua ori derivabila. Daca f are proprietatea ca  \frac{1}{b-a} \int_a^b f(x) dx = f(a) = f(b) atunci sa se arate ca exista un punct x_0 \in (a,b) astfel incat f"(x_0) = 0

« Ultima Modificare: Februarie 25, 2010, 03:56:31 p.m. de gothik12 »
Fiecare are scopul lui in lumea asta nebuna.

laurentiu

  • Vizitator
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #7 : Februarie 25, 2010, 07:34:45 p.m. »
Propun o problema ceva mai simpla, dar cu o rezolvare foarte interesanta si la care se foloseste rezultatul de la exercitiul mai jos citat:

1.Fie f:[a,b]\rightarrow\mathbb{R} continua:
a)Aratati ca exista c_1\in(a,b) a.i. \int_a^{c_1} f(x)dx=(b-c_1)f(c_1);

Fie  f: [a,b] \to \mathbb{R}, o functie de doua ori derivabila. Daca f are proprietatea ca  \frac{1}{b-a} \int_a^b f(x) dx = f(a) = f(b) atunci sa se arate ca exista un punct x_0 \in (a,b) astfel incat f"(x_0) = 0


Nici n-ai nevoie de rezultatul din problema mea .E teorema de medie o data si exista c\in(a,b),f(c)(b-a)=\int_a^b f(x)dx(teorema de medie e un fel de Lagrange pt integrale,si acum cum avem indeplinite conditiile din lagrange,c este in interior) .Apoi Rolle de 2 ori si avem 2 pct in care se anuleaza derivata ,apoi Rolle inca o data si asta e .

PS:nu stiu cum ai facut-o tu cu rezultatul din problema de la mine ,dar cu acel rezultat problema este destul de grea .E simpla facand-o asa.Poti sa postezi rezolvarea ta?
« Ultima Modificare: Februarie 25, 2010, 07:38:32 p.m. de laurentiu »

Offline b12mihai

  • Senior
  • ****
  • Mesaje postate: 1124
  • Popularitate: +2/-0
Re: Probleme analiza ,clasa a XII-a(fara calcul de integrale)
« Răspuns #8 : Februarie 27, 2010, 09:56:26 a.m. »
@laurentiu - asa-i. Asa am facut si eu demonstratia si am crezut ca se foloseste rezultatul de la acea problema cand ai f(a) = f(c) = f(b)...M-am uitat din nou peste demonstratie si nu e nevoie de rezultat.
Fiecare are scopul lui in lumea asta nebuna.