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Powell's Method

Powell’s Method

Let X0 be an initial guess at the location of the minimum of the function z = f (x1, x2,

. . . , xN ). Assume that the partial derivatives of the function are not available. An
intuitively appealing approach to approximating a minimum of the function f is to
generate the next approximation X1 by proceeding successively to a minimum of f
along each of the N standard base vectors. The process generates the sequence of
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Figure 8.10 The sequence of triangles {Tk} converging to the point (3, 2) for the
Nelder-Mead method.

points X0 = P0, P1, P2, . . . , PN = X1. Along each standard base vector the function
f is a function of one variable. Thus the minimization of f requires the application of
either the golden ratio or Fibonacci searches (Section 8.1) on an interval over which the
function is unimodal. The iteration is then repeated to generate a sequence of points
{Xk}∞k=0. Unfortunately, the method is, in general, inefficient due to the geometry of
multivariable functions. But the step from the point X0 to the point X1 is the first step
of Powell’s method.

The essence of Powell’s method is to add two steps to the process described in
the preceding paragraph. The vector PN − P0 represents, in some sense, the average
direction moved during each iteration. Thus the point X1 is determined to be the point
at which the minimum of the function f occurs along the vector PN−P0. As before, f
is a function of one variable along this vector and the minimization requires an appli-
cation of the golden ratio or Fibonacci searches. Finally, since the vector PN −P0 was
such a good direction, it replaces one of the direction vectors for the next iteration. The
iteration is then repeated using the new set of direction vectors to generate a sequence
of points {Xk}∞k=0. The process is outlined below.

Let X0 be an initial guess at the location of the minimum of the function z =
f (x1, x2, . . . , xN ), {Ek = [0 0 · · · 0 1k 0 · · · 0] : k = 1, 2, . . . , N } be the set of stan-
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Table 8.6 Function Values at Various Triangles for Example 8.6

k Best point Good point Worst point

1 f (1.2, 0.0)=−3.36 f (0.0, 0.8)= − 0.16 f (0.0, 0.0)= 0.00
2 f (1.8, 1.2)=−5.88 f (1.2, 0.0)= − 3.36 f (0.0, 0.8)= − 0.16
3 f (1.8, 1.2)=−5.88 f (3.0, 0.4)= − 4.44 f (1.2, 0.0)= − 3.36
4 f (3.6, 1.6)=−6.24 f (I.8, 1.2)= − 5.88 f (3.0, 0.4)= − 4.44
5 f (3.6, 1.6)=−6.24 f (2.4, 2.4)= − 6.24 f (1.8, 1.2)= − 5.88
6 f (2.4, 1.6)=−6.72 f (3.6, 1.6)= − 6.24 f (2.4, 2.4)= − 6.24
7 f (3.0, 1.8)=−6.96 f (2.4, 1.6)= − 6.72 f (2.4, 2.4)= − 6.24
8 f (3.0, 1.8)=−6.96 f (2.55, 2.05)= − 6.7725 f (2.4, 1.6)= − 6.72
9 f (3.0, 1.8)=−6.96 f (3.15, 2.25)= − 6.9525 f (2.55, 2.05)= − 6.7725

10 f (3.0, 1.8)=−6.96 f (2.8125, 2.0375)= − 6.95640625 f (3.15, 2.25)= − 6.9525

dard base vectors,

(9) U = [U′1 U′2 · · · U′N ] = [E′1 E′2 · · · E′N ],

and i = 0.

(i) Set P0 = Xi .

(ii) For k = 1, 2, . . . , N find the value of γk that minimizes f (Pk−1+ γkUk) and set
Pk = Pk−1 + γkUk .

(iii) Set i = i + 1.

(iv) Set U j = U j+1 for j = 1, 2, . . . , N − 1. Set UN = PN − P0.

(v) Find the value of γ that minimizes f (P0 + γ UN ). Set Xi = P0 + γ UN

(vi) Repeat steps (i) through (v).

Example 8.7. Use the process described in the preceding paragraph to find X1 and X2
for the function f (x, y) = cos(x)+ sin(y). Use the initial point X0 = (5.5, 2).

Let U =
[

1 0
0 1

]
and P0 = X0 = (5.5, 2). When i = 1 the function

f (P0 + γ1U1) = f ((5.5, 2)+ γ1(1, 0))

= f (5.5+ γ1, 2)

= cos(5.5+ γ1)+ sin(2)
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has a minimum at γ1 = −2.3584042. Thus P1 = (3.1415958, 2). When i = 2 the function

f (P1 + γ2U2) = f ((3.1415958, 2)+ γ2(0, 1))

= f (3.1415982, 2+ γ2)

= cos(3.1415982)+ sin(2+ γ2)

has a minimum at γ2 = 2.7123803. Thus P2 = (3.1415958, 4.7123803). Set U′2 =
(P2 − P0)

′ and

U =
[

0 -2.3584042
1 2.7123803

]
.

The function

f (P0 + γ U2) = f ((5.5, 2)+ γ (−2.3584042, 2.7123803))

= f (5.5− 2.3584042γ, 2+ 2.7123903γ )

= cos(5.5− 2.3584042γ )+ sin(2+ 2.7123803γ )

has a minimum at γ = 0.9816697. Thus X1 = (3.1848261, 4.6626615).
Set P0 = X1. When i = 1 the function

f (P0 + γ1U1) = f ((3.1848261, 4.6626615)+ γ1(0, 1))

= f (3.1848261, 4.6626615+ γ1)

= cos(3.1848261)+ sin(4.6626615+ γ1)

has a minimum at γ1 = 0.0497117. Thus P1 = (3.1848261, 4.7123732). When i = 2 the
function

f (P1 + γ2U2) = f ((3.1848261, 4.7123732)+ γ2(−2.3584042, 2.7123809))

= f (3.1848261− 2.3584042γ2, 4.7123732+ 2.7123809γ2)

= cos(3.1848261− 2.3584042γ2)+ sin(4.7123732+ 2.7123809γ2)

has a minimum at γ2 = 0.0078820. Thus P2 = (3.1662373, 4.7337521). Set U′2 =
(P2 − P0)

′ and

U =
[

-2.3584042 -0.0185889
2.7123803 0.0710906

]
.

The function

f (P0 + γ U2) = f ((3.1848261, 4.6626615)+ γ (−0.0185889, 0.0710906))

= f (3.1848261− 0.0185889γ, 4.6626615+ 0.0710906γ )

= cos(3.1848261− 0.0185889γ )+ sin(4.6626615+ 0.0710906γ )

has a minimum at γ = 0.8035684. Thus X2 = (3.1698887, 4.7197876).
The function f (x, y) = cos(x) + sin(y) has a relative minimum at the point P =

(π, 3π/2). The graph of f is shown in Figure 8.11. Figure 8.12 shows a contour plot of
the function f and the relative positions of the points X0, X1, and X2. �
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Figure 8.11 The graph of f (x, y) =
cos(x)+ sin(y).
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Figure 8.12 The contour graph of
f (x, y) = cos(x)+ sin(y).

In step (iv) of the previous process the first vector U1 was discarded and the av-
erage direction vector PN − P0 was added to the list of direction vectors. In fact, it
would be better to discard the vector Ur along which the greatest decrease in f oc-
curred. It seems reasonable that the vector Ur is a large component of the average
direction vector UN = PN − P0. Thus, as the number of iterations increase, the set
of direction vectors will tend to become linearly dependent. When the set becomes
linearly dependent one or more of the directions will be lost and it is likely that the
set of points {X}∞k=0 will not converge to the point at which the local minimum occurs.
Furthermore, in step (iv) it was assumed that the average direction vector represented
a good direction in which to continue the search. But that may not be the case.

Outline of Powell’s Method

(i) Set P0 = Xi .

(ii) For k = 1, 2, . . . , N find the value of γk that minimizes f (Pk−1+ γkUk) and set
Pk = Pk−1 + γkUk .

(iii) Set r and Ur equal to the maximum decrease in f and the direction of the maxi-
mum decrease, respectively, over all the direction vectors in step (ii).

(iv) Set i = i + 1.

(v) If f (2PN − P0) ≥ f (P0) or

2( f (P0)−2 f (PN )+ f (2PN−P0))( f (P0)− f (PN )−r)2 ≥ r( f (P0)− f (2PN−P0))
2,

then set Xi = PN and return to step (i). Otherwise, go to step (vi).
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(vi) Set Ur = PN − P0.

(vii) Find the value of γ that minimizes f (P0 + γ Ur ). Set Xi = P0 + γ Ur .

(viii) Repeat steps (i) through (vii).

If the conditions in step (v) are satisfied, then the set of direction vectors is left
unchanged. The first inequality in step (v) indicates that there is no further decrease
in the value of f in the average direction PN − P0. The second inequality indicates
that the decrease in the function f in the direction of greatest decrease Ur was not a
major part of the total decrease in f in step (ii). If the conditions in step (v) are not
satisfied, then the direction of greatest decrease Ur is replaced with the average direc-
tion from step (ii); PN − P0. In step (vii) the function is minimized in this direction.
Stopping criteria based on the magnitudes ‖Xi−Xi−1‖ or ‖ f (Xi )‖ are typically found
in steps (v) and (vii).
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