
Handout 1: The Levi-Civita connection

This handout derives an important formula for the connection in terms of derivatives
of the metric which tells us how geometry determines the motion of particles in GR.
This is for peace of mind only. You do not need to remember this derivation or the
equation although you could be asked to apply it. Above all, it shows that the connection
coefficients/Christoffel symbols are derivable from derivatives of the metric.

Remember first the definition of the connection coefficients:

∂β~eα = Γσ
αβ ~eσ,

where ∂β = ∂/∂xβ. Taking the scalar product of this with basis vector ~eδ gives

~eδ · ∂β~eα = Γσ
αβ ~eδ · ~eσ.

But by definition
~eδ · ~eσ = g(~eδ, ~eσ) = gδσ,

so
~eδ · ∂β~eα = gδσΓσ

αβ.

The left-hand side is close to being the derivative of ~eδ · ~eα = gδα. In fact

∂βgδα = ∂β~eδ · ~eα + ~eδ · ∂β~eα,

so that we can write
∂βgδα = gασΓσ

δβ + gδσΓσ
αβ. (1)

Cycling indices clockwise on the left-term, δ → β, α → δ, β → α, gives

∂αgβδ = gδσΓσ
βα + gβσΓσ

δα, (2)

and cycling once more in the same sense gives

∂δgαβ = gβσΓσ
αδ + gασΓσ

βδ. (3)

Adding Eqs 1 and 2 and taking away Eq. 3 gives:

∂βgδα + ∂αgβδ − ∂δgαβ = gασ (Γσ
δβ − Γσ

βδ) + gδσ (Γσ
αβ + Γσ

βα) + gβσ (Γσ
δα − Γσ

αδ) .

In GR we can assume the connection to be symmetric in its lower indices, and so the
right-hand side reduces to 2gδσΓσ

αβ. Contracting with gγδ/2 then gives

Γγ
αβ =

1

2
gγδ (∂βgαδ + ∂αgδβ − ∂δgαβ) .

This is the Levi-Civita connection. You may also see it written as

Γγ
αβ =

1

2
gγδ (gαδ,β + gδβ,α − gαβ,δ) ,

using the comma notation for partial derivatives. Therefore the connection is derivable
from the metric.
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Handout 2: Euler-Lagrange Equations

This handout provides some background on the calculus of variations leading to the
Euler-Lagrange equations. This is for completeness and is not examinable. You should
know how to apply these equations rather than memorise them.

The problem is to find a path which maximises or minimises the integral of a function
L of the coordinates xα and velocities ẋβ along a path parameterised by λ. This first
arose in a famous problem set by Leibnitz and solved by Newton to find the shape of the
curve which would lead to the minimum time for a bead sliding along it. “Velocities”
are defined as derivatives of the coordinates with respect to λ. We want a path such
that

δI = δ

∫
L(xα, ẋβ) dλ = 0.

α and β should be taken to reperesent all possible values.

Consider a small change in the path: δxα, δẋβ, then

δL =
∂L

∂xα
δxα +

∂L

∂ẋβ
δẋβ.

The second term can be integrated by parts as follows:∫
∂L

∂ẋβ
δẋβ dλ =

[
∂L

∂ẋβ
δxβ

]
−

∫
d

dλ

(
∂L

∂ẋβ

)
δxβ dλ.

If the start and end points are fixed (δxβ = 0), the first term on the right-hand side
disappears and re-labelling β to α we are left with

δI =

∫ {
∂L

∂xα
− d

dλ

(
∂L

∂ẋα

)}
δxα dλ.

For this to be true for arbitrary variations δxα, we must have

d

dλ

(
∂L

∂ẋα

)
− ∂L

∂xα
= 0,

which are the Euler-Lagrange equations. Applied to the Lagrangian from lectures, L =
gγβẋγẋβ, the Euler-Lagrange equations give

d

dλ

(
2gαβẋβ

)
− ∂gγβ

∂xα
ẋγẋβ = 0.

It is left as an exercise to show that this is equivalent to the equations of motion deduced
from parallel transport

ẍα + Γα
βγẋ

βẋγ = 0,

with Γα
βγ given by the Levi-Civita connection. Remember that dots indicate derivatives

with respect to the affine parameter λ.
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Handout 3: The Riemann Curvature tensor

Other than the key points at the bottom, the material of this handout is not examinable
and you absolutely need not remember it! It is purely for your own satisfaction.

In lectures the Riemann curvature tensor was introduced via the expression

[∇γ,∇β]Vα = Vα;βγ − Vα;γβ.

Consider the left-hand term first:

Vα;βγ = [Vα;β];γ = Vα;β,γ − Γσ
αγVσ;β − Γσ

βγVα;σ.

Expanding the covariant derivatives:

Vα;βγ = (Vα,β − Γσ
αβVσ),γ − Γσ

αγ (Vσ,β − Γρ
σβVρ)− Γσ

βγ (Vα,σ − Γρ
ασVρ) .

Swapping β and γ:

Vα;γβ = (Vα,γ − Γσ
αγVσ),β − Γσ

αβ (Vσ,γ − Γρ
σγVρ)− Γσ

γβ (Vα,σ − Γρ
ασVρ) .

Subtracting the first from the second equation, and making use of the symmetry in the
lower indices of the connection and the commutativity of partial differentiation, all the
terms with derivatives of the ~V cancel leaving

Vα;βγ − Vα;γβ = Γσ
αγ,βVσ − Γσ

αβ,γVσ + Γσ
αγΓ

ρ
σβVρ − Γσ

αβΓρ
σγVρ.

Re-labelling σ to ρ in the first term on the right-hand side leaves

Vα;βγ − Vα;γβ = (Γρ
αγ,β − Γρ

αβ,γ + Γσ
αγΓ

ρ
σβ − Γσ

αβΓρ
σγ) Vρ.

Since the left-hand side is a tensor as is Vρ, the term in brackets is a tensor too, the
Riemann curvature tensor R with components:

Rρ
αβγ = Γρ

αγ,β − Γρ
αβ,γ + Γσ

αγΓ
ρ
σβ − Γσ

αβΓρ
σγ.

Key points:

• the equation for the Levi-Civita connection means that R contains the metric and
its first derivatives

• the derivative of the connection means that R also contains second derivatives of
the metric

• in freely-falling frames, the first derivatives of the metric are zero, but the second
derivatives representing tidal forces do not vanish in general, so the curvature
tensor and gravity cannot always be transformed away.
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Handout 4: Properties of the Riemann tensor

This handout fills in some non-examinable background on the Riemann tensor. The
fully covariant Riemann tensor components are:

Rαβγδ = gαρR
ρ
βγδ = gαρ (Γρ

βδ,γ − Γρ
βγ,δ + Γσ

βδΓ
ρ
σγ − Γσ

βγΓ
ρ
σδ) .

It is much simpler if we specialize to geodesic coordinates in which the connection (but
not its derivatives) vanish:

Rαβγδ = gαρ (Γρ
βδ,γ − Γρ

βγ,δ) (4)

If we substitute the connection from the Levi-Civita equation, we find

Rαβγδ =
1

2
(gαδ,βγ − gαγ,βδ + gβγ,αδ − gβδ,αγ) .

The RHS is no longer a tensor, but it allows us to establish symmetries that are tensorial
and therefore hold in all frames. The following symmetries are easily established:

Rαβγδ = Rγδαβ = −Rβαγδ = −Rαβγδ,

Rαβγδ + Rαδβγ + Rαγδβ = 0.

Bianchi identity: If one differentiates the Riemann tensor, one can show that

Rαβγδ;µ + Rαβµγ;δ + Rαβδµ;γ = 0.

This is the Bianchi identity, and it is important in calculating the divergence of the Ricci
tensor needed for Einstein’s field equations. To show this, contract α and δ, remembering
that Rβγ = gαδRαβγδ, that gαβ;γ = 0 and using the symmetries, which gives:

gαδ (Rαβγδ;µ + Rαβµγ;δ + Rαβδµ;γ) = 0,

Rβγ;µ + Rδ
βµγ;δ −Rβµ;γ = 0.

The last line is the contracted Bianchi indentity. Contracting β and γ, raising and
lowering indices where necessary, and again using the symmetries above then leads to

gβγ
(
Rβγ;µ + Rδ

βµγ;δ −Rβµ;γ

)
= 0,

R;µ −Rδ
µ;δ −Rγ

µ;γ = 0.

Changing δ → α and multiplying by gµβ then shows that

Rαβ
;α =

1

2
R;µg

µβ,

a result used while justifying the field equations in lectures in order to balance the
energy–momentum conservation equations Tαβ

;α = 0. (Remember, since R is scalar,
R;µ = R,µ.)
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Handout 5: The Friedmann equations

This handout goes through the full derivation of the Friedmann equations, because it
would be a shame to go through a whole GR course (or university physics course for
that matter) without ever seeing how the equations that govern the entire Universe are
derived. The algebra is lengthy however, and I would not expect you to reproduce it all
in an exam. However, you could be asked for step 1 and parts of steps 2 and 4; only
step 3 is entirely off-limits. Otherwise, the main purpose is to satisfy those for whom
the phrase “it can be shown that” is irritating, but also to show why I had to resort to
it.

I will follow the steps outlined in lectures.

Step 1: metric coefficients from the interval.

The FRW interval is

ds2 = c2 dt2 − a2(t)

[
dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

]
.

We first note from this that gtt = c2, grr = −a2/(1 − kr2), gθθ = −a2r2 and gφφ =
−a2r2 sin2 θ. Since the metric is diagonal then gtt = 1/gtt = c−2, etc.

Step 2: connection from the metric.

The corresponding Lagrangian can be written down directly

L = c2ṫ2 − a2(t)

(
ṙ2

1− kr2
+ r2θ̇2 + r2 sin2 θ φ̇2

)
,

where the dots denote differentiation with respect to an affine parameter. Now apply
the Euler-Lagrange equations:

d

dλ

(
∂L

∂ẋα

)
− ∂L

∂xα
= 0.

For the t component:

2c2ẗ + 2aa′
(

ṙ2

1− kr2
+ r2θ̇2 + r2 sin2 θ φ̇2

)
= 0,

where the prime as in a′, denotes differentiation with respect to the Universal time, t.
Therefore

ẗ +
aa′

c2

(
ṙ2

1− kr2
+ r2θ̇2 + r2 sin2 θ φ̇2

)
= 0. (5)

Comparing with the geodesic equations of motion written as:

ẍα + Γα
βγẋ

αẋβ = 0,

we deduce that

Γt
rr = aa′/c2(1− kr2), Γt

θθ = aa′r2/c2, Γt
φφ = aa′r2 sin2 θ/c2.
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The seven other independent components of the form Γt
αβ are, mercifully, equal to zero.

The r-component of the Euler-Lagrange equations gives:

d

dλ

[
− 2a2ṙ

1− kr2

]
−

[
− 2ka2rṙ2

(1− kr2)2
− 2a2rθ̇2 − 2a2r sin2 θ φ̇2

]
= 0,

and so, using da/dλ = (da/dt)× (dt/dλ) = a′ṫ,

− 4aa′ṫṙ

1− kr2
− 2a2r̈

1− kr2
− 4ka2rṙ2

(1− kr2)2
+

2ka2rṙ2

(1− kr2)2
+ 2a2rθ̇2 + 2a2r sin2 θ φ̇2 = 0.

Collecting terms and dividing out the coefficient of r̈ gives

r̈ +
2a′

a
ṫṙ +

krṙ2

1− kr2
− r(1− kr2)θ̇2 − r(1− kr2) sin2 θ φ̇2 = 0. (6)

Similarly the θ and φ components give

θ̈ +
2a′

a
θ̇ṫ +

2

r
ṙθ̇ − sin θ cos θ φ̇2 = 0, (7)

φ̈ +
2a′

a
φ̇ṫ +

2

r
ṙφ̇ + 2 cot θ θ̇φ̇ = 0. (8)

Reading the connection coefficients from Eqs. 6, 7 and 8, and adding in the t-components
derived at the start, we find the following non-zero connection coefficients:

Γt
rr = aa′/c2(1− kr2), Γt

θθ = aa′r2/c2, Γt
φφ = aa′r2 sin2 θ/c2,

Γr
tr = a′/a, Γr

rr = kr/(1− kr2), Γr
θθ = −r(1− kr2),

Γr
φφ = −r(1− kr2) sin2 θ,

Γθ
tθ = a′/a, Γθ

rθ = 1/r, Γθ
φφ = − sin θ cos θ,

Γφ
tφ = a′/a, Γφ

rφ = 1/r, Γφ
θφ = cot θ.

(NB there are several errors in Hobson et al.’s version of these (1st edition, p377).) As a
by-product, Eqs 5, 6, 7 and 8 are the geodesic equations of motion in the FRW metric,
although note that since there is no explicit φ dependence, we could have gone straight
for a first integral of Eq 8 from ∂L/∂φ̇ = const:

a2r2 sin2 θ φ̇ = h.

Step 3: Ricci tensor from the connection.

The next stage is to work out the components of the Ricci tensor. This is where things
get a bit hairy, and you may prefer to skim through this and cut to the chase by going
to step 4. The Ricci tensor, which is the contraction of the Riemann tensor, is given by:

Rαβ = Γρ
αρ,β − Γρ

αβ,ρ + Γρ
ασΓσ

ρβ − Γρ
αβΓσ

ρσ.

Consider then the tt component. First set α = β = t, and then expand out the sum-
mations over dummy indices ρ and σ, remembering that the commas indicate partial
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derivatives with respect to the associated coordinate indicated after the comma, and
also that these become normal derivatives when they are time derivatives of a(t):

Rtt = Γρ
tρ,t − Γρ

tt,ρ + Γρ
tσΓσ

ρt − Γρ
ttΓ

σ
ρσ,

= 3
d

dt
(a′/a) + Γρ

tσΓσ
ρt,

= 3
d

dt
(a′/a) + Γr

trΓ
r
rt + Γθ

tθΓ
θ
rθ + Γφ

tφΓ
φ

rφ,

= 3
d

dt
(a′/a) + 3(a′/a)2,

= 3a′′/a.

where the second line follows because there are three non-zero Γρ
tρ components, all

with the same value = a′/a, and because there are no components of the form Γρ
tt. The

contra-variant version of this can be calculated without evaluating any other components
since the metric is diagonal so the only contravariant component of the metric with a
t-index is gtt = c−2, so

Rtt = gtρgtσRρσ = gttgttRtt = c−4Rtt =
3

c4

a′′

a
.

Next the rr component, now setting α = β = r in the general relation for the Ricci
tensor and, as before, expanding out the summations over ρ and σ

Rrr = Γρ
rρ,r − Γρ

rr,ρ + Γρ
rσΓσ

ρr − Γρ
rrΓ

σ
ρσ

= Γr
rr,r + Γθ

rθ,r + Γφ
rφ,r − Γt

rr,t − Γr
rr,r +

Γt
rrΓ

r
tr + Γr

rtΓ
t
rr + Γr

rrΓ
r
rr + Γθ

rθΓ
θ
θr + Γφ

rφΓ
φ

φr −
Γr

rrΓ
r
rr − Γr

rrΓ
θ
rθ − Γr

rrΓ
φ

rφ − Γt
rrΓ

r
tr − Γt

rrΓ
θ
tθ − Γt

rrΓ
φ

tφ

= − 2

r2
− ∂

∂t

[
aa′

c2(1− kr2)

]
− a′2

c2(1− kr2)
+

2

r2
− 2k

1− kr2
,

= −(aa′′ + 2a′2 + 2kc2)

c2(1− kr2)
.
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The θθ component gives

Rθθ = Γρ
θρ,θ − Γρ

θθ,ρ + Γρ
θσΓσ

ρθ − Γρ
θθΓ

σ
ρσ

= Γφ
θφ,θ − Γt

θθ,t − Γr
θθ,r +

Γt
θθΓ

θ
tθ + Γr

θθΓ
θ
rθ + Γθ

θtΓ
t
θθ + Γθ

θrΓ
r
θθ + Γφ

θφΓ
φ

φθ −
Γt

θθΓ
r
tr − Γt

θθΓ
θ
tθ − Γt

θθΓ
φ

tφ − Γr
θθΓ

r
rr − Γr

θθΓ
θ
rθ − Γr

θθΓ
φ

rφ,

= Γφ
θφ,θ − Γt

θθ,t − Γr
θθ,r +

Γθ
θtΓ

t
θθ + Γθ

θrΓ
r
θθ + Γφ

θφΓ
φ

φθ −
Γt

θθΓ
r
tr − Γt

θθΓ
φ

tφ − Γr
θθΓ

r
rr − Γr

θθΓ
φ

rφ,

= Γφ
θφ,θ − Γt

θθ,t − Γr
θθ,r +

Γθ
θtΓ

t
θθ + Γθ

θrΓ
r
θθ + Γφ

θφΓ
φ

φθ −
Γt

θθΓ
r
tr − Γt

θθΓ
φ

tφ − Γr
θθΓ

r
rr − Γr

θθΓ
φ

rφ,

= − 1

sin2 θ
− r2(aa′′ + a′2)

c2
+ 1− 3kr2 +

a′

a

r2aa′

c2
− (1− kr2) + cot2 θ −

r2aa′

c2

a′

a
− r2aa′

c2

a′

a
+ r(1− kr2)

kr2

1− kr2
+ r(1− kr2)

1

r
,

= −(aa′′ + 2a′2 + 2kc2)

c2
r2.

Finally, the φφ component,

Rφφ = Γρ
φρ,φ − Γρ

phiφ,ρ + Γρ
φσΓσ

ρφ − Γρ
φφΓ

σ
ρσ

= −Γt
φφ,t − Γr

φφ,r − Γθ
φφ,θ +

Γt
φφΓ

φ
tφ + Γr

φφΓ
φ

rφ + Γφ
φtΓ

t
φφ + Γφ

φrΓ
r
φφ + Γθ

φφΓ
φ

θφ + Γφ
φθΓ

θ
φφ −

Γt
φφΓ

r
tr − Γt

φφΓ
θ
tθ − Γt

φφΓ
φ

tφ − Γr
φφΓ

r
rr − Γr

φφΓ
θ
rθ − Γr

φφΓ
φ

rφ − Γθ
φφΓ

φ
θφ,

= −Γt
φφ,t − Γr

φφ,r − Γθ
φφ,θ +

Γφ
φtΓ

t
φφ + Γφ

φrΓ
r
φφ + Γθ

φφΓ
φ

θφ − Γt
φφΓ

r
tr − Γt

φφΓ
θ
tθ − Γr

φφΓ
r
rr − Γr

φφΓ
θ
rθ,

= − ∂

∂t

(
r2aa′ sin2 θ

c2

)
+

∂

∂r

(
r(1− kr2) sin2 θ

)
+

∂

∂θ
(sin θ cos θ)

+
r2a′2 sin2 θ

c2
− (1− kr2) sin2 θ − cos2 θ − r2a′2 sin2 θ

c2
− r2a′2 sin2 θ

c2

+kr2 sin2 θ + (1− kr2) sin2 θ,

= −r2 sin2 θ(aa′′ + a′2)

c2
+ (1− 3kr2) sin2 θ + cos2 θ − sin2 θ − r2a′2 sin2 θ

c2

−(1− kr2) sin2 θ − cos2 θ + kr2 sin2 θ + (1− kr2) sin2 θ

= −(aa′′ + 2a′2 + 2kc2)

c2
r2 sin2 θ

Collecting all the components together and changing the derivatives with respect to time
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from primes to dots:

Rtt =
3ä

a
, (9)

Rrr = −(aä + 2ȧ2 + 2kc2)

c2(1− kr2)
, (10)

Rθθ = −(aä + 2ȧ2 + 2kc2)

c2
r2, (11)

Rφφ = −(aä + 2ȧ2 + 2kc2)

c2
r2 sin2 θ. (12)

All other components are zero. The Ricci scalar follows from these

R = gαβRαβ = gttRtt + grrRrr + gθθRθθ + gφφRφφ = 6
(aä + ȧ2 + kc2)

c2a2

This is, as expected, independent of spatial position.

Step 4: Substitute into the field equations.

As shown in lectures, the field equations can be written

Rαβ = −8πG

c4

(
Tαβ −

1

2
Tgαβ

)
.

Assuming a perfect fluid

Tαβ =
(
ρ +

p

c2

)
UαUβ − pgαβ,

and
T = gαβTαβ =

(
ρ +

p

c2

)
gαβUαUβ − pgαβgαβ = ρc2 − 3p.

In comoving coordinates, the fluid is stationary and so Uα = (1, 0, 0, 0) and since Ut =
gttU

t, then Uα = (c2, 0, 0, 0). Therefore

Ttt = ρc4,

Trr =
a2p

1− kr2
,

Tθθ = a2r2p,

Tφφ = a2r2 sin2 θ p.

Therefore the tt component of the field equations leads to

3
ä

a
= −8πG

c4

(
ρc4 − 1

2
(ρc2 − 3p)c2

)
,

which gives

ä = −4πG

3

(
ρ +

3p

c2

)
a, (13)

9



The rr component gives

−(aä + 2ȧ2 + 2kc2)

c2(1− kr2)
= −8πG

c4

(
a2p

1− kr2
− 1

2
(ρc2 − 3p)

−a2

1− kr2

)
,

and therefore

aä + 2ȧ2 + 2kc2 =
4πG

c2
(−p + ρc2)a2.

Substituting for ä from Eq. 13 gives

ȧ2 =
8πG

3
ρa2 − kc2. (14)

The θθ and φφ components give the same relation.

From Eqs 13 and 14 one can also show the also are the Friedman equations. From them
one can also show that

ρ̇ +
(
ρ +

p

c2

) 3ȧ

a
= 0. (15)

This equation comes directly from the energy conservations relation Tαβ
;α = 0.

Eqs. 13, 14 and 15 are the Friedmann equations which govern the evolution of the size
a and density ρ of the Universe. For summary they are

ä = −4πG

3

(
ρ +

3p

c2

)
a,

ȧ2 =
8πG

3
ρa2 − kc2,

ρ̇ +
(
ρ +

p

c2

) 3ȧ

a
= 0.

Note that quasi-Newtonian derivations exist for the last two equations, but they are
relativistic in origin and there is no explanation from Newtonian physics for the presence
of pressure in the first equation or for the interpretation of k as spatial curvature.
Moreover, one is forced to rely on arguments from GR to justify the neglect of the
Universe when calculating the second equation. Nevertheless, the Newtonian derivations
provide useful insight into the form of these equations. The first shows the decelleration
of the expansion of the Universe owing to the gravitating matter/energy (and pressure)
within it. The second has the form of a kinetic energy plus potential energy equals total
energy equation, while the third says that the density of the Universe decreases because
of the dilution of expansion (the 3ȧ/a term) and because of the work down by every
element of volume in the Universe pushing back the rest of the Universe.
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