Ştiri:

Vă rugăm să citiţi Regulamentul de utilizare a forumului Scientia în secţiunea intitulată "Regulamentul de utilizare a forumului. CITEŞTE-L!".

Main Menu

Limita interesanta

Creat de foton01, Noiembrie 10, 2012, 08:30:36 AM

« precedentul - următorul »

0 Membri şi 1 Vizitator vizualizează acest subiect.

foton01

Buna dimineata!

Imi puteti va rog da o idee despre cum sa rezolv urmatoarea limita:
limita cand n tinde la infinit din xn unde xn=1/(n+1)+1/(n+2)+...+1/(n^2)-ln(n).
Multumesc !  ;D


zec

#1
Nu cumva se termina in 1/2n aceea suma?
In fine nu conteaza cum e ,poate ca e la patrat.Aceasta limita se face cu ajutorul unei limite celebre,pe care am vazuto in probleme din manual sau prin variante de bac.
E vorba de limita 1+1/2+1/3+......+1/n-ln(n)=C unde C este constanta lui Euler,care mai este notata cu [tex]\gamma[/tex].
Notam cu [tex]y_n[/tex] sirul de mai sus si ar trebui sa remarci urmatoarea relatie:
[tex]y_{n^2}-y_n=x_n[/tex].De aici restul e simplu .Treci la limita si rezulta limita 0